Zoological Research ›› 2017, Vol. 38 ›› Issue (3): 163-170.doi: 10.24272/j.issn.2095-8137.2017.036

• Articles • Previous Articles    

EP300 contributes to high-altitude adaptation in Tibetans by regulating nitric oxide production

Wang-Shan Zheng1,2, Yao-Xi He2,4, Chao-Ying Cui3, Ouzhuluobu3, Dejiquzong3, Yi Peng2, Cai-Juan Bai3, Duojizhuoma3, Gonggalanzi3, Bianba3, Baimakangzhuo3, Yong-Yue Pan3, Qula3, Kangmin3, Cirenyangji3, Baimayangji3, Wei Guo3, Yangla3, Hui Zhang2, Xiao-Ming Zhang2, Yong-Bo Guo1,2, Shu-Hua Xu5,8,9, Hua Chen6, Sheng-Guo Zhao1, Yuan Cai1, Shi-Ming Liu7, Tian-Yi Wu7, Xue-Bin Qi2, Bing Su2   

  1. 1 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou Gansu 730070, China;
    2 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;
    3 High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China;
    4 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China;
    5 Chinese Academy of Sciences Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
    6 Center for Computational Genomics, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
    7 National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining Qinghai 810012, China;
    8 School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China;
    9 Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
  • Received:2017-03-24 Revised:2017-04-27 Online:2017-05-18 Published:2017-05-18
  • Contact: Bing Su,E-mail:sub@mail.kiz.ac.cn;Xue-Bin Qi,E-mail:qixuebin@mail.kiz.ac.cn E-mail:sub@mail.kiz.ac.cn;qixuebin@mail.kiz.ac.cn
  • Supported by:

    This study was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB13010000), the National Natural Science Foundation of China (91631306 to BS, 31671329 to XQ, 31460287 to Ou, 31501013 to HZ, and 31360032 to CC), the National 973 program (2012CB518202 to TW), the State Key Laboratory of Genetic Resources and Evolution (GREKF15-05, GREKF16-04), and the Zhufeng Scholar Program of Tibetan University #Authors contributed equally to this work


The genetic adaptation of Tibetans to high altitude hypoxia likely involves a group of genes in the hypoxic pathway, as suggested by earlier studies. To test the adaptive role of the previously reported candidate gene EP300 (histone acetyltransferase p300), we conducted resequencing of a 108.9 kb gene region of EP300 in 80 unrelated Tibetans. The allele-frequency and haplotype-based neutrality tests detected signals of positive Darwinian selection on EP300 in Tibetans, with a group of variants showing allelic divergence between Tibetans and lowland reference populations, including Han Chinese, Europeans, and Africans. Functional prediction suggested the involvement of multiple EP300 variants in gene expression regulation. More importantly, genetic association tests in 226 Tibetans indicated significant correlation of the adaptive EP300 variants with blood nitric oxide (NO) concentration. Collectively, we propose that EP300 harbors adaptive variants in Tibetans, which might contribute to high-altitude adaptation through regulating NO production.

Anokhina EB, Buravkova LB. 2010. Mechanisms of regulation of transcription factor HIF under hypoxia. Biochemistry (Moscow), 75(2):151-158.
Beall CM. 2007. Two routes to functional adaptation:tibetan and Andean high-altitude natives. Proceedings of the National Academy of Sciences of the United States of America, 104(S1):8655-8660.
Beall CM, Cavalleri GL, Deng LB, Elston RC, Gao Y, Knight J, Li CH, Li JC, Liang Y, McCormack M, Montgomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu YM, Xu Z, Yang L, Zaman MJ, Zeng CQ, Zhang L, Zhang XL, Zhaxi PC, Zheng YT. 2010. Natural selection on EPAS1(HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proceedings of the National Academy of Sciences of the United States of America, 107(25):11459-11464.
Bigham A, Bauchet M, Pinto D, Mao XY, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, Herráez DL, Brutsaert T, Parra EJ, Moore LG, Shriver MD. 2010. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genetics, 6(9):e1001116.
Coulet F, Nadaud S, Agrapart M, Soubrier F. 2003. Identification of hypoxiaresponse element in the human endothelial nitric-oxide synthase gene promoter. Journal of Biological Chemistry, 278(47):46230-46240.
Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. 2010.
Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Computational Biology, 6(12):e1001025.
Eckner R, Ewen ME, Newsome D, Gerdes M, Decaprio JA, Lawrence JB, Livingston DM. 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes & Development, 8(8):869-884.
Ernst J, Kellis M. 2012. ChromHMM:automating chromatin-state discovery and characterization. Nature Methods, 9(3):215-216.
Foster MW, Mcmahon TJ, Stamler JS. 2003. S-nitrosylation in health and disease. Trends in Molecular Medicine, 9(4):160-168.
Freedman SJ, Sun ZYJ, Poy F, Kung AL, Livingston DM, Wagner G, Eck MJ. 2002. Structural basis for recruitment of CBP/p300 by hypoxiainducible factor-1α. Proceedings of the National Academy of Sciences of the United States of America, 99(8):5367-5372.
Goodman RH, Smolik S. 2000. CBP/p300 in cell growth, transformation, and development. Genes & Development, 14(13):1553-1577.
Gray MJ, Zhang J, Ellis LM, Semenza GL, Evans DB, Watowich SS, Gallick GE. 2005. HIF-1α, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene, 24(19):3110-3120.
Ho JJ, Man HSJ, Marsden PA. 2012. Nitric oxide signaling in hypoxia. Journal of Molecular Medicine, 90(3):217-231.
Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. 2002. Asparagine hydroxylation of the HIF transactivation domain:a hypoxic switch. Science, 295(5556):858-861.
Levett DZ, Fernandez BO, Riley HL, Martin DS, Mitchell K, Leckstrom CA, Ince C, Whipp BJ, Mythen MG, Montgomery HE, Grocott MP, Feelisch M, Caudwell Extreme Everest Research Group. 2011. The role of nitrogen oxides in human adaptation to hypoxia. Scientific Reports, 1:109.
Liao D, Johnson RS. 2007. Hypoxia:a key regulator of angiogenesis in cancer. Cancer and Metastasis Reviews, 26(2):281-290.
Lorenzo FR, Huff C, Myllymäki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, McClain DA, Khan TM, Koul PA, Guchhait P, Salama ME, Xing JC, Semenza GL, Liberzon E, Wilson A, Simonson TS, Jorde LB, Kaelin WG, Jr., Koivunen P, Prchal JT. 2014. A genetic mechanism for Tibetan high-altitude adaptation. Nature Genetics, 46(9):951-956.
Lu DS, Lou HY, Yuan K, Wang XJ, Wang YC, Zhang C, Lu Y, Yang X, Deng L, Zhou Y, Feng QD, Hu Y, Ding QL, Yang YJ, Li SL, Jin L, Guan YQ, Su B, Kang LL, Xu SH. 2016. Ancestral origins and genetic history of tibetan highlanders. The American Journal of Human Genetics, 99(3):580-594.
Matouk CC, Marsden PA. 2008. Epigenetic regulation of vascular endothelial gene expression. Circulation Research, 102(8):873-887.
Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. 1995. A hypoxiaresponsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. Journal of Experimental Medicine, 182(6):1683-1693.
Negri G, Magini P, Milani D, Colapietro P, Rusconi D, Scarano E, Bonati MT, Priolo M, Crippa M, Mazzanti L, Wischmeijer A, Tamburrino F, Pippucci T, Finelli P, Larizza L, Gervasini C. 2016. From whole gene deletion to point mutations of EP300-positive Rubinstein-Taybi patients:new insights into the mutational spectrum and peculiar clinical hallmarks. Human Mutation, 37(2):175-183.
Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87(5):953-959.
Peng Y, Cui CY, He YX, Ouzhuluobu, Zhang H, Yang DY, Zhang Q, Bianbazhuoma, Yang LX, He YB, Xiang K, Zhang XM, Bhandari S, Shi P, Yangla, Dejiquzong, Baimakangzhuo, Duojizhuoma, Pan YY, Cirenyangji, Baimayangji, Gonggalanzi, Bai CJ, Bianba, Basang, Ciwangsangbu, Xu SH, Chen H, Liu SM, Wu TY, Qi XB, Su B. 2017. Down-regulation of EPAS1 transcription and genetic adaptation of tibetans to high-altitude hypoxia. Molecular biology and evolution. Molecular Biology and Evolution, 34(4):818-830.
Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, Tao X, Wu T, Ouzhuluobu, Basang, Ciwangsangbu, Danzengduojie, Chen H, Shi H, Su B. 2011. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Molecular Biology and Evolution, 28(2):1075-1081.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. 2007. PLINK:a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3):559-575.
Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie XH, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, The International HapMap Consortium. 2007. Genome-wide detection and characterization of positive selection in human populations. Nature, 449(7164):913-918.
Simonson TS, Yang YZ, Huff CD, Yun HX, Qin G, Witherspoon DJ, Bai ZZ, Lorenzo FR, Xing JC, Jorde LB, Prchal JT, Ge RL. 2010. Genetic evidence for high-altitude adaptation in Tibet. Science, 329(5987):72-75.
Solomon BD, Bodian DL, Khromykh A, Mora GG, Lanpher BC, Iyer RK, Baveja R, Vockley JG, Niederhuber JE. 2015. Expanding the phenotypic spectrum in EP300-related Rubinstein-Taybi syndrome. American Journal of Medical Genetics. Part A, 167(5):1111-1116.
Szpiech ZA, Hernandez RD. 2014. Selscan:an efficient multithreaded program to perform EHH-based scans for positive selection. Molecular Biology and Evolution, 31(10):2824-2827.
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3):585-595.
Teufel DP, Freund SM, Bycroft M, Fersht AR. 2007. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proceedings of the National Academy of Sciences of the United States of America, 104(17):7009-7014.
Voight BF, Kudaravalli S, Wen XQ, Pritchard JK. 2006. A map of recent positive selection in the human genome. PLoS Biology, 4(3):e72.
Wang BB, Zhang YB, Zhang F, Lin HB, Wang XM, Wan N, Ye ZQ, Weng HY, Zhang LL, Li X, Yan JW, Wang PP, Wu TT, Cheng LF, Wang J, Wang DM, Ma X, Yu J. 2011. On the origin of Tibetans and their genetic basis in adapting high-altitude environments. PLoS One, 6(2):e17002.
Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38(6):1358-1370.
Won D, Zhu SN, Chen M, Teichert AM, Fish JE, Matouk CC, Bonert M, Ojha M, Marsden PA, Cybulsky MI. 2007. Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow. The American Journal of Pathology, 171(5):1691-1704.
Wu TY, Kayser B. 2006. High altitude adaptation in Tibetans. High Altitude Medicine & Biology, 7(3):193-208.
Xiang K, Ouzhuluobu, Peng Y, Yang ZH, Zhang XM, Cui CY, Zhang H, Li M, Zhang YF, Bianba, Gonggalanzi, Basang, Ciwangsangbu, Wu TY, Chen H, Shi H, Qi XB, Su B. 2013. Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. Molecular Biology and Evolution, 30(8):1889-1898.
Xu SH, Li SL, Yang YJ, Tan JZ, Lou HY, Jin WF, Yang L, Pan XD, Wang JC, Shen YP, Wu BL, Wang HY, Jin L. 2011. A genome-wide search for signals of high-altitude adaptation in Tibetans. Molecular Biology and Evolution, 28(2):1003-1011.
Yang DY, Peng Y, Ouzhuluobu, Bianbazhuoma, Cui CY, Bianba, Wang LB, Xiang K, He YX, Zhang H, Zhang XM, Liu JW, Shi H, Pan YY, Duojizhuoma, Dejiquzong, Cirenyangji, Baimakangzhuo, Gonggalanzi, Liu SM, Gengdeng, Wu TY, Chen H, Qi XB, Su B. 2016. HMOX2 functions as a modifier gene for high-altitude adaptation in Tibetans. Human Mutation, 37(2):216-223.
Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng HC, Liu T, He WM, Li K, Luo RB, Nie XF, Wu HL, Zhao MR, Cao HZ, Zou J, Shan Y, Li SZ, Yang Q, Asan, Ni PX, Tian G, Xu JM, Liu X, Jiang T, Wu RH, Zhou GY, Tang MF, Qin JJ, Wang T, Feng SJ, Li GH, Huasang, Luosang JB, Wang W, Chen F, Wang YD, Zheng XG, Li Z, Bianba Z, Yang G, Wang XP, Tang SH, Gao GY, Chen Y, Luo Z, Gusang L, Cao Z, Zhang QH, Ouyang WH, Ren XL, Liang HQ, Zheng HS, Huang YB, Li JX, Bolund L, Kristiansen K, Li YR, Zhang Y, Zhang XQ, Li RQ, Li SG, Yang HM, Nielsen R, Wang J, Wang J. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 329(5987):75-78.
Zhang B, Day DS, Ho JW, Song LY, Cao JJ, Christodoulou D, Seidman JG, Crawford GE, Park PJ, Pu WT. 2013. A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity. Genome Research, 23(6):917-927.

No related articles found!
Full text



[1] LIU Wei-bin,GONG Cheng-liang,XUE Ren-yu,ZHOU Wen-lin,ZHU Xu-xian,CAO Guang-li *. Cloning and Analysis of Fhx/P25 Gene Promoter of Bombyx mori Fibroin Protein[J]. Zoological Research, 2007, 28(1): 17 -23 .
[2] YU Bo,KUANG Rong-ping,SHAN Fang,TANG Ye-zhong,ZHONG Ning. Effect of Temperature on The Development of Woolly Apple Aphip,Eriosoma Lanigerum (Hausm.)[J]. Zoological Research, 1989, 10(1): 51 -56 .
[3] WANG Guo-han,LUO Jun-lie,WANG Zheng-sun. Comparative Studies on The karyotypes of Three Species of Nematodes in The genus Neoaplect ana[J]. Zoological Research, 1989, 10(1): 71 -77 .
[4] CAI Xia,LONG Jian-er. Effect of DNA Methylation onIgf-2r Expression in the Development of Cloned Cattle[J]. Zoological Research, 2007, 28(5): 470 -476 .
[5] DING Fang-mei,SHI Hong-wen,HUANG Yuan. Complete Mitochondrial Genome and Secondary Structures of lrRNA and srRNA of Atractomorpha sinensis (Orthoptera, Pyrgomorphidae)[J]. Zoological Research, 2007, 28(6): 580 -588 .
[6] ZHU Shi-hua,ZHENG Wen-juan,ZOU Ji-xing,YANG Ying-chun,SHEN Xi-quan. Mitochondrial DNA Control Region Structure and MolecularPhylogenetic Relationship of Carangidae[J]. Zoological Research, 2007, 28(6): 606 -614 .
[7] LI Xiao-juan,ZHOU Cai-quan,JIN Li-guang. Avian Diversity and Bird Strike Avoidance in Gaoping Airport of Nanchong in Autumn and Winter[J]. Zoological Research, 2007, 28(6): 615 -625 .
[8] WEI Zhu-ying,SHAO Hua,LIU Dong-jun,BOU Shor-gan. Mytomycin Made in China Can Be Used to Isolate Embryonic Stem Cells with Ability in Contributing to Germ Lines[J]. Zoological Research, 2007, 28(6): 654 -658 .
[9] DAI Qiang,GU Hai-jun ,,WANG Yue-zhao. Theories and Models for Habitat Selection[J]. Zoological Research, 2007, 28(6): 681 -688 .
[10] FENG Qing,WANG Ying-xiang,LIN Su. Notes of Greater Long-tongued Fruit Bat Macroglossus sobrinus in China[J]. Zoological Research, 2007, 28(6): 647 -653 .