Volume 36 Issue 6
Nov.  2015
Turn off MathJax
Article Contents
Min WANG, Amy F.T. ARNSTEN. Physiological approaches to understanding molecular actions on dorsolateral prefrontal cortical neurons underlying higher cognitive processing. Zoological Research, 2015, 36(6): 314-318. doi: 10.13918/j.issn.ZoolRes.2015.6.314
Citation: Min WANG, Amy F.T. ARNSTEN. Physiological approaches to understanding molecular actions on dorsolateral prefrontal cortical neurons underlying higher cognitive processing. Zoological Research, 2015, 36(6): 314-318. doi: 10.13918/j.issn.ZoolRes.2015.6.314

Physiological approaches to understanding molecular actions on dorsolateral prefrontal cortical neurons underlying higher cognitive processing

doi: 10.13918/j.issn.ZoolRes.2015.6.314
  • Received Date: 2015-08-18
  • Publish Date: 2015-11-18
  • :Revealing how molecular mechanisms influence higher brain circuits in primates will be essential for understanding how genetic insults lead to increased risk of cognitive disorders. Traditionally, modulatory influences on higher cortical circuits have been examined using lesion techniques, where a brain region is depleted of a particular transmitter to determine how its loss impacts cognitive function. For example, depletion of catecholamines or acetylcholine from the dorsolateral prefrontal cortex produces striking deficits in working memory abilities. More directed techniques have utilized direct infusions of drug into a specific cortical site to try to circumvent compensatory changes that are common following transmitter depletion. The effects of drug on neuronal firing patterns are often studied using iontophoresis, where a minute amount of drug is moved into the brain using a tiny electrical current, thus minimizing the fluid flow that generally disrupts neuronal recordings. All of these approaches can be compared to systemic drug administration, which remains a key arena for the development of effective therapeutics for human cognitive disorders. Most recently, viral techniques are being developed to be able to manipulate proteins for which there is no developed pharmacology, and to allow optogenetic manipulations in primate cortex. As the association cortices greatly expand in brain evolution, research in nonhuman primates is particularly important for understanding the modulatory regulation of our highest order cognitive operations.
  • loading
  • [1]
    Arnsten AFT. 2009. Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience , 10(6): 410-422.
    Arnsten AFT, Cai JX. 1993. Post-synaptic alpha-2 receptor stimulation improves working memory in aged monkeys: Indirect effects of yohimbine vs. direct effects of clonidine. Neurobiology of Aging , 14(6): 597-603.
    Arnsten AFT, Goldman-Rakic PS. 1985. Alpha-2 adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science , 230(4731): 1273-1276.
    Arnsten AFT, Jin LE. 2012. Guanfacine for the treatment of cognitive disorders: a century of discoveries at Yale. The Yale Journal of Biology and Medicine , 85(1): 45-58.
    Arnsten AFT, Mathew R, Ubriani R, Taylor JR, Li B-M. 1999. Alpha-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biological Psychiatry , 45(1): 26-31.
    Arnsten AFT, Raskind M, Taylor FB, Connor DF. 2015. The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for Post-Traumatic Stress Disorder. Neurobiology of Stress , 1(1): 89-99.
    Brozoski T, Brown RM, Rosvold HE, Goldman PS. 1979. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science , 205 (4409): 929-931.
    Cai JX, Ma Y, Xu L, Hu X. 1993. Reserpine impairs spatial working memory performance in monkeys: Reversal by the alpha-2 adrenergic agonist clonidine. Brain Research , 614 (1-2): 191-196.
    Croxson PL, Kyriazis DA, Baxter MG. 2011. Cholinergic modulation of a specific memory function of prefrontal cortex. Nature Neuroscience , 14(12): 1510-1512.
    Gamo NJ, Duque A, Paspalas CD, Kata A, Fine R, Boven L, Bryan C, Lo T, Anighoro K, Bermudez L, Peng K, Annor A, Mansson E, Taylor SR, Patel K, Simen AA, Arnsten AFT. 2013. Role of disrupted in schizophrenia 1 (DISC1) in stress-induced prefrontal cognitive dysfunction. Translational Psychiatry , 3: e328.
    Gamo NJ, Lur G, Higley MJ, Wang M, Paspalas CD, Vijayraghavan S, Yang Y, Ramos BP, Peng K, Kata A, Boven L, Lin F, Roman L, Lee D, Arnsten AFT. 2015. Stress impairs prefrontal cortical function via D1 dopamine receptor interactions with HCN channels. Biological Psychiatry , Feb 4 [Epub ahead of print].
    Langer SZ. 1978. Presynaptic receptors. Nature , 275: 479-480.
    Li BM, Mao ZM, Wang M, Mei ZT. 1999. Alpha-2 adrenergic modulation of prefrontal cortical neuronal activity related to spatial working memory in monkeys. Neuropsychopharmacology , 21(5): 601-610.
    Li BM, Mei ZT. 1994. Delayed response deficit induced by local injection of the alpha-2 adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behavioral and Neural Biology , 62(2): 134-139.
    Ma CL, Arnsten AFT, Li BM. 2005. Locomotor hyperactivity induced by blockade of prefrontal cortical alpha-2-adrenoceptors in monkeys. Biological Psychiatry , 57(2): 192-195.
    Ma CL, Qi XL, Peng JY, Li BM. 2003. Selective deficit in no-go performance induced by blockade of prefrontal cortical alpha2-adrenoceptors in monkeys. Neuroreport , 14: 1013-1016.
    Nassi JJ, Avery MC, Cetin AH, Roe AW, Reynolds JH. 2015. Optogenetic activation of normalization in alert macaque visual cortex. Neuron , 86(6): 1504-1517.
    Puig MV, Miller EK, 2012. The role of prefrontal dopamine D1 receptors in the neural mechanisms of associative learning. Neuron , 74(5): 874-886.
    Roberts AC. 2011. The importance of serotonin for orbitofrontal function. Biological Psychiatry , 69(12): 1185-1191.
    Sawaguchi T, Goldman-Rakic PS. 1991. D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science , 251(4996): 947-950.
    Walker SC, Robbins TW, Roberts AC. 2009. Differential contributions of dopamine and serotonin to orbitofrontal cortex function in the marmoset. Cerebral Cortex , 19(4): 889-898.
    Wang M, Ramos B, Paspalas C, Shu Y, Simen A, Duque A, Vijayraghavan S, Brennan A, Dudley AG, Nou E, Mazer JA, McCormick DA, Arnsten AFT. 2007. Alpha2A-adrenoceptor stimulation strengthens working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell , 129(2): 397-410.
    Wang M, Yang Y, Wang CJ, Gamo NJ, Jin LE, Mazer JA, Morrison JH, Wang X-J, Arnsten AF. 2013. NMDA receptors subserve working memory persistent neuronal firing In dorsolateral prefrontal cortex. Neuron , 77(4): 736-749.
    Zahrt J, Taylor JR, Mathew RG, Arnsten AFT. 1997. Supranormal stimulation of dopamine D1 receptors in the rodent prefrontal cortex impairs spatial working memory performance. The Journal of Neuroscience , 17(21): 8528-8535.
  • Relative Articles

    [1] Shi-Hao Wu, Zhi-Xing Liao, Joshua D. Rizak, Na Zheng, Lin-Heng Zhang, Hen Tang, Xiao-Bin He, Yang Wu, Xia-Ping He, Mei-Feng Yang, Zheng-Hui Li, Dong-Dong Qin, Xin-Tian Hu. Comparative study of the transfection efficiency of commonly used viral vectors in rhesus monkey (Macaca mulatta) brains. Zoological Research, 2017, 38(2): 88-95.  doi: 10.24272/j.issn.2095-8137.2017.015
    [2] HE Jing, CHEN Yan-mei, WANG Jian-hong, MA Yuan-ye. Effect of Co-administration of Morphine and Cholinergic Antagonists on Y-maze Spatial Recognition Memory Retrieval and Locomotor Activity in Mice. Zoological Research, 2008, 29(6): 613-620.  doi: 10.3724/SP.J.1141.2008.06613
    [3] SHU Hu, LIU Xiao-chun, LIN Hao-ran. Effects of Sustained Administration of LHRH-A on Ovary Development, Sex Steroid Hormone Secretion and Ultrastructure of Gonadotropic Cell in Epinephelus akaara. Zoological Research, 2005, 26(4): 422-428.
    [4] ZHOU Tian-lu, ZHONG Yong-mei, LI Xia, SU Zhao-yu. Circadlan Rhythm of Urination and Its Change After Suprachiasmatic Nucleus Lesion in Tree Shrews. Zoological Research, 1998, 19(5): 374-378.
    [5] WANG Gui-lan, MA Yan-ye, TIAN Bao-ping. The Relationships Between Preforntal Cortex and Immune System Ⅰ.Effects of biolateral dorsal-lateral prefronal cortex lesion on immunity of lymphocyte in rhesus monkeys. Zoological Research, 1997, 18(2): 205-211.
    [6] ZHAI Zi-yu, KO Hong-wen et al., GONG Ming-yao. Viral Hemorrhagic Disease of Black Carp (Mylopharyngodon piceus). Zoological Research, 1987, 8(4): 379-386.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (530) PDF downloads(1475) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint