Zoological Research ›› 2018, Vol. 39 ›› Issue (5): 301-308.doi: 10.24272/j.issn.2095-8137.2018.037

• Review •     Next Articles

Species delimitation based on diagnosis and monophyly, and its importance for advancing mammalian taxonomy

Eliécer E. Gutiérrez1,2,*, Guilherme S. T. Garbino3   

  1. 1 Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Centro de Ciências Naturais e Exatas, Universidade
    Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
    2 Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington DC 20013-7012, USA
    3 Pós-graduação, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte,
    Minas Gerais 31270-901, Brazil
  • Online:2018-09-18 Published:2018-07-13
  • Contact: Eliécer E. Gutiérrez,E-mail:ee.gutierrez.bio@gmail.com E-mail:ee.gutierrez.bio@gmail.com
  • Supported by:


A recently proposed taxonomic classification of extant ungulates sparked a series of publications that criticize the Phylogenetic Species Concept (PSC) claiming it to be a particularly poor species concept. These opinions reiteratively stated that (1) the two fundamental elements of the "PSC", i.e., monophyly and diagnosability, do not offer objective criteria as to where the line between species should be drawn; and (2) that extirpation of populations can lead to artificial diagnosability and spurious recognitions of species. This sudden eruption of criticism against the PSC is misleading. Problems attributed to the PSC are common to most approaches and concepts that modern systematists employ to establish species boundaries. The controversial taxonomic propositions that sparked criticism against the PSC are indeed highly problematic, not because of the species concept upon which they are based, but because no evidence (whatsoever) has become public to support a substantial portion of the proposed classification. We herein discuss these topics using examples from mammals. Numerous areas of biological research rest upon taxonomic accuracy (including conservation biology and biomedical research); hence, it is necessary to clarify what are (and what are not) the real sources of taxonomic inaccuracy.

CLC Number: 

[1] Yi Ren, Shui-Fang Liu, Li Nie, Shi-Yu Cai, Jiong Chen. Involvement of ayu NOD2 in NF-κB and MAPK signaling pathways: Insights into functional conservation of NOD2 in antibacterial innate immunity [J]. Zoological Research, 2019, 40(2): 77-88.
[2] Peng-Lai Fan, Yi-Ming Li, Craig B. Stanford, Fang Li, Ze-Tian Liu, Kai-Hua Yang, Xue-Cong Liu. Home range variation of two different-sized groups of golden snub-nosed monkeys (Rhinopithecus roxellana) in Shennongjia, China: implications for feeding competition [J]. Zoological Research, 2019, 40(2): 121-128.
[3] Qi Jiang, Dong-Po Xia, Xi Wang, Dao Zhang, Bing-Hua Sun, Jin-Hua Li. Interchange between grooming and infant handling in female Tibetan macaques (Macaca thibetana) [J]. Zoological Research, 2019, 40(2): 139-145.
[4] Jin-Bo Xiong, Li Nie, Jiong Chen. Current understanding on the roles of gut microbiota in fish disease and immunity [J]. Zoological Research, 2019, 40(2): 70-76.
[5] Ruo-Han Qi, Yan Chen, Zhi-Lai Guo, Fen Zhang, Zheng Fang, Kai Huang, Hai-Ning Yu, Yi-Peng Wang. Identification and characterization of two novel cathelicidins from the frog Odorrana livida [J]. Zoological Research, 2019, 40(2): 94-101.
[6] Yan-Fang Cui, Feng-Jie Wang, Lei Yu, Hua-Hu Ye, Gui-Bo Yang. Metagenomic comparison of the rectal microbiota between rhesus macaques (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis) [J]. Zoological Research, 2019, 40(2): 89-93.
[7] You-Ji Zhang, Yi-Xin Chen, Hao-Chun Chen, Yuan Chen, Hui Yao, Wan-Ji Yang, Xiang-Dong Ruan, Zuo-Fu Xiang. Social functions of relaxed open-mouth display in golden snub-nosed monkeys (Rhinopithecus roxellana) [J]. Zoological Research, 2019, 40(2): 113-120.
[8] Cheng-Dong Wang, Xiao-Fang Guo, Thomas Chi Bun Wong, Hui Wang, Xu-Feng Qi, Dong-Qing Cai, Yi Deng, Hui Zhao. Developmental expression of three prmt genes in Xenopus [J]. Zoological Research, 2019, 40(2): 102-107.
[9] Chao-Hao Chen, Bi-Jun Li, Xiao-Hui Gu, Hao-Ran Lin, Jun-Hong Xia. Marker-assisted selection of YY supermales from a genetically improved farmed tilapia-derived strain [J]. Zoological Research, 2019, 40(2): 108-112.
[10] Wei-Wei Fu, Xiao-Wei Wang, Cheng-Liang Wang, Hai-Tao Zhao, Yi Ren, Bao-Guo Li. Effects of age, sex and manual task on hand preference in wild Rhinopithecus roxellana [J]. Zoological Research, 2019, 40(2): 129-138.
[11] Simon Musila, Zhong-Zheng Chen, Quan Li, Richard Yego, Bin Zhang, Kenneth Onditi, Immaculate Muthoni, Shui-Wang He, Samson Omondi, James Mathenge, Esther N. Kioko, Xue-Long Jiang. Diversity and distribution patterns of non-volant small mammals along different elevation gradients on Mt. Kenya, Kenya [J]. Zoological Research, 2019, 40(1): 53-60.
[12] . 2019 New Year Address of Zoological Research [J]. Zoological Research, 2019, 40(1): 1-2.
[13] Simon Musila, Ara Monadjem, Paul W. Webala, Bruce D. Patterson, Rainer Hutterer, Yvonne A. De Jong, Thomas M. Butynski, Geoffrey Mwangi, Zhong-Zheng Chen, Xue-Long Jiang. An annotated checklist of mammals of Kenya [J]. Zoological Research, 2019, 40(1): 3-52.
[14] . Contents [J]. Zoological Research, 2019, 40(1): 1-69.
[15] Ogeto Mwebi, Esther Nguta, Veronica Onduso, Ben Nyakundi, Xue-Long Jiang, Esther N. Kioko. Small mammal diversity of Mt. Kenya based on carnivore fecal and surface bone remains [J]. Zoological Research, 2019, 40(1): 61-69.
Full text



[1] LIAO Wen-bo,LI Cao ,*,HU Jin-chu ,*,LU Xin. Vocal Behaviour of Sichuan Hill Partridge (Arborophila rufipectus) in Breeding Season[J]. Zoological Research, 2007, 28(1): 56 -62 .
[2] XIONG Yu-liang,WANG Wan-yu,YANG Chang-jin,TIEN Yun-fen. Inhibitory Effects of The Elapidae Venoms in The Mice's Sarcoma 180 Ehrilich Ascititers Carcenoma[J]. Zoological Research, 1989, 10(1): 31 -35 .
[3] HOU Yi-di,PENG Yan-zhang. A Description of New Species of Trichocephalus (Trichocephalidae,Trichocephalata) From The Golden Monkey,Rhinopithecus Bieti[J]. Zoological Research, 1989, 10(1): 45 -50 .
[4] YANG Da-tong,LI Si-min. A New Species of the Genus Rana From Yunnan[J]. Zoological Research, 1980, 1(2): 261 -264 .
[5] LI Fan,ZHONG Jun-sheng. A NEW SPECIES OF RHINOGOBIUS FROM ZHEJIANG PROVINCE, CHINA (Teleostei: Gobiidae)[J]. Zoological Research, 2007, 28(5): 539 -544 .
[6] . New Proof for Astrocytes Having L-type Calcium Channels[J]. Zoological Research, 2007, 28(5): 485 -490 .
[7] WEI Zhu-ying,SHAO Hua,LIU Dong-jun,BOU Shor-gan. Mytomycin Made in China Can Be Used to Isolate Embryonic Stem Cells with Ability in Contributing to Germ Lines[J]. Zoological Research, 2007, 28(6): 654 -658 .
[8] GUI Xiao-jie,XIANG Zuo-fu,LI Li. A Preliminary Population Viability Analysis of Cabot’s Tragopan (Tragopan caboti)[J]. Zoological Research, 2007, 28(6): 626 -633 .
[9] Muhammad Naeem Awan,Mir Mohammad Saleem. Avifaunal Diversity of the Pattika Recreational Park, Muzaffarabad, Azad Kashmir, Pakistan[J]. Zoological Research, 2007, 28(6): 634 -639 .
[10] QIU Chen-li,YANG Gui-bo. Detection of Mamu-DRB*W101 and Mamu-DRB*W201 in Chinese Rhesus Monkeys by PCR-SSP[J]. Zoological Research, 2007, 28(6): 664 -669 .