Please wait a minute...
ZOOLOGICAL RESEARCH    2017, Vol. 38 Issue (2) : 88-95     DOI: 10.24272/j.issn.2095-8137.2017.015
Reports |
Comparative study of the transfection efficiency of commonly used viral vectors in rhesus monkey (Macaca mulatta) brains
Shi-Hao Wu1,2, Zhi-Xing Liao1,2, Joshua D. Rizak1, Na Zheng1,2, Lin-Heng Zhang1,2, Hen Tang1, Xiao-Bin He6, Yang Wu6, Xia-Ping He1,2, Mei-Feng Yang4, Zheng-Hui Li1,2, Dong-Dong Qin1, Xin-Tian Hu1,3,5
1 Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;
2 Nerve System Coding Discipline Group, Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming Yunnan 650000, China;
3 Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;
4 Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming Yunnan 650500, China;
5 CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China;
6 Center for Excellence in Brain Science, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan Hubei 430071, China
Download: PDF(1959 KB)   RICH HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Viral vector transfection systems are among the simplest of biological agents with the ability to transfer genes into the central nervous system. In brain research, a series of powerful and novel gene editing technologies are based on these systems. Although many viral vectors are used in rodents, their full application has been limited in non-human primates. To identify viral vectors that can stably and effectively express exogenous genes within non-human primates, eleven commonly used recombinant adeno-associated viral and lentiviral vectors, each carrying a gene to express green or red fluorescence, were injected into the parietal cortex of four rhesus monkeys. The expression of fluorescent cells was used to quantify transfection efficiency. Histological results revealed that recombinant adeno-associated viral vectors, especially the serotype 2/9 coupled with the cytomegalovirus, human synapsin I, or Ca2+/calmodulin-dependent protein kinase II promoters, and lentiviral vector coupled with the human ubiquitin C promoter, induced higher expression of fluorescent cells, representing high transfection efficiency. This is the first comparison of transfection efficiencies of different viral vectors carrying different promoters and serotypes in non-human primates (NHPs). These results can be used as an aid to select optimal vectors to transfer exogenous genes into the central nervous system of non-human primates.

Keywords Recombinant adeno-associated virus      Lentivirus      Rhesus monkey      Central nervous system     

This study was supported by the National Program on Key Basic Research Project (973 Programs 2015CB755605) and the National Natural Science Foundation of China (81471312)

Corresponding Authors: Dong-Dong Qin, Xin-Tian Hu   
Issue Date: 18 March 2017
E-mail this article
E-mail Alert
Articles by authors
Shi-Hao Wu
Zhi-Xing Liao
Joshua D. Rizak
Na Zheng
Lin-Heng Zhang
Hen Tang
Xiao-Bin He
Yang Wu
Xia-Ping He
Mei-Feng Yang
Zheng-Hui Li
Dong-Dong Qin
Xin-Tian Hu
Cite this article:   
Shi-Hao Wu,Zhi-Xing Liao,Joshua D. Rizak, et al. Comparative study of the transfection efficiency of commonly used viral vectors in rhesus monkey (Macaca mulatta) brains[J]. ZOOLOGICAL RESEARCH, 2017, 38(2): 88-95.
URL:     OR

Alexopoulou AN, Couchman JR, Whiteford JR. 2008. The CMV early enhancer/chicken β actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors. BMC Cell Biology, 9:2.
Arhel N, Munier S, Souque P, Mollier K, Charneau P. 2006. Nuclear import defect of human immunodeficiency virus type 1 DNA flap mutants is not dependent on the viral strain or target cell type. Journal of Virology, 80(20):10262-10269.
Aschauer DF, Kreuz S, Rumpel S. 2013. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One, 8(9):e76310.
Bartlett JS, Samulski RJ, McCown TJ. 1998. Selective and rapid uptake of adeno-associated virus type 2 in brain. Human Gene Therapy, 9(8):1181-1186.
Bennett J. 2003. Immune response following intraocular delivery of recombinant viral vectors. Gene Therapy, 10(11):977-982.
Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, Gao GP, Wilson JM, Sweeney HL. 2008. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Human Gene Therapy, 19(12):1359-1368.
Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N. 2004. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Molecular Therapy, 10(2):302-317.
Cearley CN, Wolfe JH. 2006. Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Molecular Therapy, 13(3):528-537.
Carter P & Samulski R. 2000. Adeno-associated viral vectors as gene delivery vehicles. International journal of molecular medicine, 6(1), 17-44.
Cockrell AS, Kafri T. 2007. Gene delivery by lentivirus vectors. Molecular Biotechnology, 36(3):184-204.
Costantini LC, Bakowska JC, Breakefield XO, Isacson O. 2000. Gene therapy in the CNS. Gene Therapy, 7(2):93-109.
Cronin J, Zhang XY, Reiser J. 2005. Altering the tropism of lentiviral vectors through pseudotyping. Current Gene Therapy, 5(4):387-398.
Davidoff AM, Gray JT, Ng CY, Zhang YB, Zhou JF, Spence Y, Bakar Y, Nathwani AC. 2005. Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Molecular Therapy, 11(6):875-888.
Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA, Zabner J, Ghodsi A, Chiorini JA. 2000. Recombinant adeno-associated virus type 2, 4, and 5 vectors:transduction of variant cell types and regions in the mammalian central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 97(7):3428-3432.
Davidson BL, Breakefield XO. 2003. Viral vectors for gene delivery to the nervous system. Nature Reviews Neuroscience, 4(5):353-364.
Dittgen T, Nimmerjahn A, Komai S, Licznerski P, Waters J, Margrie TW, Helmchen F, Denk W, Brecht M, Osten P. 2004. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proceedings of the National Academy of Sciences of the United States of America, 101(52):18206-18211.
Dodiya HB, Bjorklund T, Stansell J III, Mandel RJ, Kirik D, Kordower JH. 2010. Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Molecular Therapy, 18(3):579-587.
Elder GA, Gama Sosa MA, De Gasperi R. 2010. Transgenic mouse models of Alzheimer's disease. Mount Sinai Journal of Medicine:A Journal of Translational and Personalized Medicine, 77(1):69-81.
Fenno L, Yizhar O, Deisseroth K. 2011. The development and application of optogenetics. Annual Review of Neuroscience, 34(1):389-412.
Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. 2002. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 99(18):11854-11859.
Gerits A, Vancraeyenest P, Vreysen S, Laramée ME, Michiels A, Gijsbers R, Van den Haute C, Moons L, Debyser Z, Baekelandt V, Arckens L, Vanduffel W. 2015. Serotype-dependent transduction efficiencies of recombinant adeno-associated viral vectors in monkey neocortex. Neurophotonics, 2(3):031209.
Gruh I, Wunderlich S, Winkler M, Schwanke K, Heinke J, Blömer U, Ruhparwar A, Rohde B, Li RK, Haverich A. 2008. Human CMV immediate-early enhancer:a useful tool to enhance cell-type-specific expression from lentiviral vectors. The Journal of Gene Medicine, 10(1):21-32.
Hioki H, Kameda H, Nakamura H, Okunomiya T, Ohira K, Nakamura K, Kuroda M, Furuta T, Kaneko T. 2007. Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Therapy, 14(11):872-882.
Jennings CG, Landman R, Zhou Y, Sharma J, Hyman J, Movshon JA, Qiu ZL, Roberts AC, Roe AW, Wang XQ, Zhou HH, Wang LP, Zhang F, Desimone R, Feng GP. 2016. Opportunities and challenges in modeling human brain disorders in transgenic primates. Nature Neuroscience, 19(9):1123-1130.
Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O'Malley KL, During MJ. 1994. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Genetics, 8(2):148-154.
Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Björklund A. 2002. Parkinson-like neurodegeneration induced by targeted overexpression of α-synuclein in the nigrostriatal system. The Journal of Neuroscience, 22(7):2780-2791.
Kügler S, Kilic E, Bähr M. 2003. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Therapy, 10(4):337-347.
Lai ZN, Brady RO. 2002. Gene transfer into the central nervous system in vivo using a recombinant lentivirus vector. Journal of Neuroscience Research, 67(3):363-371.
Lawlor PA, Bland RJ, Mouravlev A, Young D, During MJ. 2009. Efficient gene delivery and selective transduction of glial cells in the mammalian brain by AAV serotypes isolated from nonhuman primates. Molecular Therapy, 17(10):1692-1702.
Lewis P, Hensel M, Emerman M. 1992. Human immunodeficiency virus infection of cells arrested in the cell cycle. The EMBO Journal, 11(8):3053-3058.
Liu Z, Li X, Zhang JT, Cai YJ, Cheng TL, Cheng C, Wang Y, Zhang CC, Nie YH, Chen ZF, Bian WJ, Zhang L, Xiao JQ, Lu B, Zhang YF, Zhang XD, Sang X, Wu JJ, Xu X, Xiong ZQ, Zhang F, Yu X, Gong N, Zhou WH, Sun Q, Qiu ZL. 2016. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature, 530(7588):98-102.
Markakis EA, Vives KP, Bober J, Leichtle S, Leranth C, Beecham J, Elsworth JD, Roth RH, Samulski RJ, Redmond Jr DE. 2010. Comparative transduction efficiency of AAV vector serotypes 1-6 in the substantia nigra and striatum of the primate brain. Molecular Therapy, 18(3):588-593.
Mayford M, Baranes D, Podsypanina K, Kandel ER. 1996. The 3'-untranslated region of CaMKIIα is a cis-acting signal for the localization and translation of mRNA in dendrites. Proceedings of the National Academy of Sciences of the United States of America, 93(23):13250-13255.
Miller DG, Adam MA, Miller AD. 1990. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Molecular and Cellular Biology, 10(8):4239-4242.
Mingozzi F, High KA. 2013. Immune responses to AAV vectors:overcoming barriers to successful Gene Therapy. Blood, 122(1):23-36.
Miyoshi H, Blömer U, Takahashi M, Gage FH, Verma IM. 1998. Development of a self-inactivating lentivirus vector. Journal of Virology, 72(10):8150-8157.
Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D. 1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 272(5259):263-267.
Nayak S, Herzog RW. 2010. Progress and prospects:immune responses to viral vectors. Gene Therapy, 17(3):295-304.
Niu YY, Shen B, Cui YQ, Chen YC, Wang JY, Wang L, Kang Y, Zhao XY, Si W, Li W, Xiang AP, Zhou JK, Guo XJ, Bi Y, Si CY, Hu B, Dong GY, Wang H, Zhou ZM, Li TQ, Tan T, Pu XQ, Wang F, Ji SH, Zhou Q, Huang XX, Ji WZ, Sha JH. 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156(4):836-843.
Niu YY, Guo XY, Chen YC, Wang CE, Gao JQ, Yang WL, Kang Y, Si W, Wang H, Yang SH, Li S, Ji W, Li XJ. 2015. Early Parkinson's disease symptoms in α-synuclein transgenic monkeys. Human Molecular Genetics, 24(8):2308-2317.
Okano H, Hikishima K, Iriki A, Sasaki E. 2012. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Seminars in Fetal and Neonatal Medicine, 17(6):336-340.
Orth M, Tabrizi SJ. 2003. Models of Parkinson's disease. Movement Disorders, 18(7):729-737.
Paxinos G, Huang XF, Toga AW. 2000. The Rhesus Monkey Brain in Stereotaxic Coordinates. San Diego:Academic Press.
Rabinowitz JE, Rolling F, Li CW, Conrath H, Xiao WD, Xiao X, Samulski RJ. 2002. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. Journal of Virology, 76(2):791-801.
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6):1380-1389.
Ridet JL, Bensadoun JC, Déglon N, Aebischer P, Zurn AD. 2006. Lentivirus-mediated expression of glutathione peroxidase:neuroprotection in murine models of Parkinson's disease. Neurobiology of Disease, 21(1):29-34.
Samaranch L, Salegio EA, San Sebastian W, Kells AP, Foust KD, Bringas JR, Lamarre C, Forsayeth J, Kaspar BK, Bankiewicz KS. 2012. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Human Gene Therapy, 23(4):382-389.
Scheyltjens I, Laramée ME, Van den Haute C, Gijsbers R, Debyser Z, Baekelandt V, Vreysen S, Arckens L. 2015. Evaluation of the expression pattern of rAAV2/1, 2/5, 2/7, 2/8, and 2/9 serotypes with different promoters in the mouse visual cortex. Journal of Comparative Neurology, 523(14):2019-2042.
Schmidt M, Voutetakis A, Afione S, Zheng CY, Mandikian D, Chiorini JA. 2008. Adeno-associated virus type 12 (AAV12):a novel AAV serotype with sialic acid- and heparan sulfate proteoglycan-independent transduction activity. Journal of Virology, 82(3):1399-1406.
Schorpp M, Jäger R, Schellander K, Schenkel J, Wagner EF, Weiher H, Angel P. 1996. The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice. Nucleic Acids Research, 24(9):1787-1788.
Shultz S, Opie C, Atkinson QD. 2011. Stepwise evolution of stable sociality in primates. Nature, 479(7372):219-222.
Taymans JM, Vandenberghe LH, Van Den Haute C, Thiry I, Deroose CM, Mortelmans L, Wilson JM, Debyser Z, Baekelandt V. 2007. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Human Gene Therapy, 18(3):195-206.
Towne C, Schneider BL, Kieran D, Redmond Jr DE, Aebischer P. 2010. Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Therapy, 17(1):141-146.
Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H, Ozawa K, Isa T, Yamamori T. 2015. Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neuroscience Research, 93:144-157.
Weinberg MS, Samulski RJ, McCown TJ. 2013. Adeno-associated virus (AAV) Gene Therapy for neurological disease. Neuropharmacology, 69:82-88.
Wilhelm F, Winkler U, Morawski M, Jäger C, Reinecke L, Rossner MJ, Hirrlinger PG, Hirrlinger J. 2011. The human ubiquitin C promoter drives selective expression in principal neurons in the brain of a transgenic mouse line. Neurochemistry International, 59(6):976-980.
Wiznerowicz M, Trono D. 2005. Harnessing HIV for therapy, basic research and biotechnology. Trends in Biotechnology, 23(1):42-47.
Wong LF, Goodhead L, Prat C, Mitrophanous KA, Kingsman SM, Mazarakis ND. 2006. Lentivirus-mediated gene transfer to the central nervous system:therapeutic and research applications. Human Gene Therapy, 17(1):1-9.
Xiao WD, Chirmule N, Berta SC, McCullough B, Gao GP, Wilson JM. 1999. Gene therapy vectors based on adeno-associated virus type 1. Journal of Virology, 73(5):3994-4003.
Xiao X. 2003. Virus-based vectors for gene expression in mammalian cells:adeno-associated virus. New Comprehensive Biochemistry, 38:93-108.
Yang MF, Miao JY, Rizak J, Zhai RW, Wang ZB, Huma T, Li T, Zheng N, Wu SH, Zheng YW, Fan XN, Yang JZ, Wang JH, Yang SC, Ma YY, Lü LB, He RQ, Hu XT. 2014. Alzheimer's disease and methanol toxicity (part 2):lessons from four rhesus macaques (Macaca mulatta) chronically fed methanol. Journal of Alzheimer's Disease, 41(4):1131-1147.
Yang R, Wang QJ, Min LQ, Sui RB, Li J, Liu XW. 2013. Monosialoanglioside improves memory deficits and relieves oxidative stress in the hippocampus of rat model of Alzheimer's disease. Neurological Sciences, 34(8):1447-1451.
Zhang B. 2017. Consequences of early adverse rearing experience(EARE) on development:insights from non-human primate studies Zoological Research, 38(1):7-35.
Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. 2008. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular Therapy, 16(6):1073-1080.
Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. 1997. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nature Biotechnology, 15(9):871-875.

[1] BIAN Hui, FAN Yao-Dong, GUO Li-Yun, YU Hua-Lin. A technique of rhesus monkey neural progenitor cells intravitreal transplant to rats[J]. ZOOLOGICAL RESEARCH, 2012, 33(1): 85-88.
[2] DONG Jin-Run, GUO Li-Yun, QU Jia-Gui, QI Ren-Li, WANG Wen-Chao, XIAO Chun-Jie, WANG Zheng-Bo. Rhesus monkey embryonic stem cells differentiation, proliferation and allotransplantation[J]. ZOOLOGICAL RESEARCH, 2012, 33(1): 43-48.
[3] TANG Xiang-Hui, CAO Yue-Ling, YANG Ze-Xing, ZHAO Fu-Xian. Reproductive traits of polycystic ovary syndrome in female rhesus monkeys[J]. ZOOLOGICAL RESEARCH, 2012, 33(1): 37-42.
[4] GUO Xiang-Yu,JIN Li-Fang,JI Shao-Hui,JI Wei-Zhi. Rhesus monkey (Macaca mulatta) muller cells exhibit retinal stem/progenitor cell features in vitro[J]. ZOOLOGICAL RESEARCH, 2011, 32(6): 611-616.
[5] JIN Li-Fang,JI Shao-Hui,YANG Ji-Feng,JI Wei-Zhi. Notch signaling dependent differentiation of cholangiocyte-likecells from rhesus monkey embryonic stem cells[J]. ZOOLOGICAL RESEARCH, 2011, 32(4): 391-395.
[6] JIN Li-Fang,JI Shao-Hui,YANG Ji-Feng,JI Wei-Zhi. Notch signaling dependent differentiation of cholangiocyte-likecells from rhesus monkey embryonic stem cells[J]. ZOOLOGICAL RESEARCH, 2011, 3(4): 391-395.
[7] ZHANG Chi,WANG Xiao-Xiao,WANG Lu,XIANG Ying,WEI Qing,WANG Wan-Yu,XIONG Yu-Lian. Application of flow cytometry to detect ABO blood group antibody levels in rhesus monkeys and cynomolgus monkeys[J]. ZOOLOGICAL RESEARCH, 2011, 32(1): 56-61.
[8] JIN Li-fang,JI Shao-hui,GUO Xiang-yu,WANG Xi-hong,JI Wei-zhi. Induction of Rhesus Monkey Embryonic Stem Cells into Hepatocyte-like Cells by a Three-step Method[J]. ZOOLOGICAL RESEARCH, 2009, 30(5): 509-514.
[9] . Tissue Distribution of TRIM5α in Rhesus Monkey and Upregulation in Peripheral Blood Mononuclear Cell by Using Different Stimuli[J]. ZOOLOGICAL RESEARCH, 2009, 30(4): 354-360.
[10] CHEN Dong-liang,LI Rong-rong,ZHANG Jing,LU Bin,WEI Qiang,WANG Shu-fen,XIE Yun-h. Comparative Analysis of Five Different Homologous Feeder Cell Lines in the Ability to Support Rhesus Embryonic Stem Cells[J]. ZOOLOGICAL RESEARCH, 2009, 30(4): 345-353.
[11] LI Rong-rong,CHEN Hong-wei,CHEN Dong-liang,WANG Shu-fen,ZHAN jing,CHEN Rui,J. Hepatocyte Growth Factor Promotes the Proliferation of the Neural Progenitors Derived from Rhesus Monkey Embryonic Stem Cells[J]. ZOOLOGICAL RESEARCH, 2008, 29(5): 518-528.
[12] BU Cui-ping,XI Geng-si,LIANG Ai-ping,OUYANG Xia-hui. Distribution of Like-muscarinic Acetylcholine Receptor M2 in the Brain of Three Castes of Polyrhachis vicina[J]. ZOOLOGICAL RESEARCH, 2008, 29(4): 431-437.
[13] ZHANG Jing,WEI Qiang,LU Bin,CHEN Yong-chang,CHEN Hong-wei,LI Rong-rong. Influence of Different FGF2-expressing Feeder Layers on the Self-renewal and Pluripotency of Rhesus Monkey Embryonic Stem Cells[J]. ZOOLOGICAL RESEARCH, 2008, 29(4): 405-414.
[14] LI Yi ,,HUANG Wei ,ZHANG Xin ,SU Bing ,*. Construction of a cDNA Library of the Prefrontal Cortex of Rhesus Monkey[J]. ZOOLOGICAL RESEARCH, 2006, 27(3): 325-330.
[15] ZHANG Xiu-zhen CAI Ke-jun WANG Shu-fen HU Zhi-xing PEI Yi-jing JI Wei-zhi ,*. Preparation of Rabbit Anti-Human PBMC Antiserum and Rabbit Anti-Rhesus Monkey (Macaca mulatta) Spleen Cell Antiserum and Their Application in Isolating Human and Monkey Inner Cell Masses[J]. ZOOLOGICAL RESEARCH, 2006, 27(1): 48-53.
Full text