Please wait a minute...
动物学研究  2017, Vol. 38 Issue (5): 310-316    DOI: 10.24272/j.issn.2095-8137.2017.058
  Reports 本期目录 | 过刊浏览 | 高级检索 |
葡萄麂(Muntiacus putaoensis)线粒体全基因组的测定和麂属动物系统发育研究
李国刚1,2, 张明霞1,2, Kyaw Swa3, Kyaw-Win Maung4, 权锐昌1,2
1 中国科学院东南亚生物多样性研究中心, 内比都 耶津 05282, 缅甸;
2 中国科学院西双版纳热带植物园综合保护中心, 云南 勐腊 666303, 中国;
3 Hponkan Razi野生动物庇护所办公室, 克钦 葡萄 01051, 缅甸;
4 缅甸自然资源与环境保护部林业研究所, 内比都 耶津 05282, 缅甸
Complete mitochondrial genome of the leaf muntjac (Muntiacus putaoensis) and phylogenetics of the genus Muntiacus
Guo-Gang Li1,2, Ming-Xia Zhang1,2, Kyaw Swa3, Kyaw-Win Maung4, Rui-Chang Quan1,2
1 Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin Nay Pyi Taw 05282, Myanmar;
2 Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla Yunnan 666303, China;
3 Hponkan Razi Wildlife Sanctuary Offices, Putao Kachin 01051, Myanmar;
4 Forest Research Institute, Forest Department Ministry of Environmental Conservation and Forestry, Yezin Nay Pyi Taw 05282, Myanmar
全文: PDF(379 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 葡萄麂(Muntiacus putaoensis)为发现于喜马拉雅(trans-Himalayan)东部地区的土著物种。近年来,其种群数量由于狩猎和栖息地丧失而急剧下降,但由于缺乏有关葡萄麂的遗传学研究,我们对其分布范围和种群数量知之甚少。我们通过PCR直接测序的方法获得了葡萄麂线粒体全基因组序列,同时获得17个个体的2个线粒体片段(ND4L-ND4和Cyt b)。线粒体基因组序列全长为16 349 bp,是环状结构,包含13个蛋白质编码基因,2个rRNA基因,22个tRNA基因和1个控制区(D-loop),其基因组成和排列顺序与目前所报道的绝大多数脊椎动物相似。除了ND6基因和8个tRNA基因由L链编码之外,其他基因都是H链编码的。H链的碱基组成分别为33.1% A,29.3% T,24.2% C和13.4% G,有特别高的A+T含量(62.4%)。基于线粒体全基因组和基因ND4L-ND4的系统发育分析(最大似然法和贝叶斯法)支持葡萄麂为麂属属下一独立种,其姐妹种为大角麂(M.vuquangensis)。然而,当基于Cyt b的分析包括更多麂属动物时,与葡萄麂关系最近的是安南麂(M.truongsonensis)而不是大角麂,结果显示葡萄麂、安南麂与罗氏麂一起(M.rooseveltorum)形成了罗氏麂物种复合体(species complex)。本研究将有助于探索葡萄麂的演化历史和分类地位,也有助于保护其遗传资源。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 麂属葡萄麂线粒体基因组系统发育    
Abstract:The leaf muntjac (Muntiacus putaoensis) is an endemic deer species found in the east trans-Himalayan region. In recent years, population numbers have decreased due to heavy hunting and habitat loss, and little genetic data exists for this species, thus our knowledge of distribution rangs and population sizes likewise remain limited. We obtained mtDNA genes and the complete mitochondrial genome sequence of M. putaoensis using PCR, followed by direct sequencing. The complete mitogenome sequence was determined as a circular 16 349 bp mitochondrial genome, containing 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one control region, the gene composition and order of which were similar to most other vertebrates so far reported. Most mitochondrial genes, except for ND6 and eight tRNAs, were encoded on the heavy strand. The overall base composition of the heavy strand was 33.1% A, 29.3% T, 24.2% C, and 13.4% G, with a strong AT bias of 62.4%. There were seven regions of gene overlap totaling 95 bp and 11 intergenic spacer regions totaling 74 bp. Phylogenetic analyses (ML and BI) among the Muntiacus genus based on the sequenced of mitogenome and ND4L-ND4 supported M. putaoensis as a member of Muntiacus, most closely related to M. vuquangensis. However, when analyses based on cyt b included two more muntjacs, M. truongsonensis was most closely related to M. putaoensis rather than M. vuquangensis, and together with M. rooseveltorum, likely forming a M. rooseveltorum complex of the species. This study will help in the exploration of the evolutionary history and taxonomic status of the leaf muntjac, as well as its protection as a genetic resource.
Key wordsMuntiacus    Muntiacus putaoensis    Mitogenome    Phylogenetics
收稿日期: 2017-08-10      接受日期:
通讯作者: Rui-Chang Quan   
引用本文:   

Guo-Gang Li, Ming-Xia Zhang, Kyaw Swa, Kyaw-Win Maung, Rui-Chang Quan. Complete mitochondrial genome of the leaf muntjac (Muntiacus putaoensis) and phylogenetics of the genus Muntiacus. Zoological Research, 2017, 38(5): 310-316.
链接本文:  
http://www.zoores.ac.cn/CN/10.24272/j.issn.2095-8137.2017.058      或      http://www.zoores.ac.cn/CN/Y2017/V38/I5/310
Amato G, Egan MG, Rabinowitz A. 1999. A new species of muntjac, Muntiacus putaoensis (Artiodactyla:Cervidae) from northern Myanmar. Animal Conservation, 2(1):1-7.<br />
Choudhury A. 2007. Discovery of leaf deer Muntiacus putaoensis in Nagaland with a new northerly record from Arunachal Pradesh. Journal of the Bombay Natural History Society, 104:205-208.<br />
Choudhury A. 2009. Records and distribution of Gongshan and leaf muntjacs in India. Deer Specialist Group News, 23:2-7.<br />
Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2:more models, new heuristics and parallel computing. Nature Methods, 9(8):772.<br />
Datta A, Pansa J, Madhusudan MD, Mishra C. 2003. Discovery of the leaf deer Muntiacus putaoensis in Arunachal Pradesh:An addition to the large mammals of India. Current Science, 84(3):454-458.<br />
Fontana F, Rubini M. 1990. Chromosomal evolution in Cervidae. Biosystems, 24(2):157-174.<br />
Giao PM, Tuoc D, Dung VV, Wikramanayake ED, Amato G, Arctander P, MacKinnon JR. 1998. Description of Muntiacus truongsonensis, a new species of muntjac (Artiodactyla:Muntiacidae) from central Vietnam, and implications for conservation. Animal Conservation, 1(1):61-68.<br />
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies:assessing the performance of PhyML 3.0. Systematic Biology, 59(3):307-321.<br />
Hassanin A, Delsuc F, Ropiquet A, Hammer C, Van Vuuren BJ, Matthee C, Ruiz-Garcia M, Catzeflis F, Areskoug V, Nguyen TT. 2012. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus Biologies, 335(1):32-50.<br />
Irwin DM, Kocher TD, Wilson AC. 1991. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution, 32(2):128-144.<br />
James J, Ramakrishnan U, Datta A. 2008. Molecular evidence for the occurrence of the leaf deer Muntiacus putaoensis in Arunachal Pradesh, north-east India. Conservation Genetics, 9(4):927-931.<br />
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and clustal X version 2.0. Bioinformatics, 23(21):2947-2948.<br />
Librado P, Rozas J. 2009. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11):1451-1452.<br />
Martins RF, Fickel J, Le M, Van Nguyen T, Nguyen HM, Timmins R, Gan HM, Rovie-Ryan JJ, Lenz D, Forster DW, Wilting A. 2017. Phylogeography of red muntjacs reveals three distinct mitochondrial lineages. BMC Evolutionary Biology, 17:34.<br />
Rabinowitz A, Khaing ST. 1998. Status of selected mammal species in North Myanmar. Oryx, 32(3):201-208.<br />
Rabinowitz A, Myint T, Khaing ST, Rabinowitz S. 1999. Description of the leaf deer (Muntiacus putaoensis), a new species of muntjac from northern Myanmar. Journal of Zoology, 249(4):427-435.<br />
Rao M, Htun S, Zaw T, Myint T. 2010. Hunting, livelihoods and declining wildlife in the Hponkanrazi Wildlife Sanctuary, North Myanmar. Environmental Management, 46(2):143-153.<br />
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3):539-542.<br />
Schaller GB, Rabinowitz A. 2004. Species of barking deer (genus Muntiacus) in the eastern Himalayan region. The Journal of the Bombay Natural History Society, 101(3):442-444.<br />
Shi YF, Shan XN, Li J, Zhang XM, Zhang HJ. 2003. Sequence and organization of the complete mitochondrial genome of the Indian muntjac (Muntiacus muntjak). Acta Zoologica Sinica, 49(5):629-636. (in Chinese)<br />
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10):2731-2739.<br />
Timmins R J, Duckworth JW. 2016. Muntiacus putaoensis. The IUCN Red List of Threatened Species 2016:e.T136479A22159478. http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T136479A22159478.en<br />
Tuoc D, Dung VV, Dawson S, Arctander P, MacKinnon J. 1994. Introduction of a new large mammal species in Vietnam. Science and Technology News, 3:4-12.<br />
Wang W, Lan H. 2000. Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny. Molecular Biology and Evolution, 17(9):1326-1333.<br />
Wu HL, Fang SG. 2005. Mitochondrial DNA genetic diversity of black muntjac (Muntiacus crinifrons), an endangered species endemic to China. Biochemical Genetics, 43(7-8):407-416.<br />
Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 20(17):3252-3255.<br />
Zhang HJ, Li J, Shi YF, Zhang XM, Xu CH, Shan XN. 2004a. Complete sequence of black muntjac (Muntiacus crinifrons) mitochondrial genome. Chinese Journal of Biochemistry and Molecular Biology, 20(4):513-518. (in Chinese)<br />
Zhang XM, Shan XN, Shi YF, Zhang HJ, Li J, Zheng AL. 2004b. Sequence and organization of Muntiacus reevesi mitochondrial genome. Hereditas (Beijing), 26(6):849-853.
[1] 刘少英, 何锴, 陈顺德, 靳伟, Robert W. Murphy, 唐明坤, 廖锐, 李凤君. 中国姬鼠属和家鼠属物种多样性[J]. 动物学研究, 2018, 39(5): 309-320.
[2] 何锴, 陈欣, 陈鹏, 何水旺, 程峰, 蒋学龙, Kevin L. Campbell. 中国哺乳动物鼩鼱科一新属:豹鼩属[J]. 动物学研究, 2018, 39(5): 321-334.
[3] Thy Neang, Somaly Chan, Nikolay A. Poyarkov, Jr.. 柬埔寨发现滑蜥属一新种(爬行纲:石龙子科)[J]. 动物学研究, 2018, 39(3): 220-240.
[4] Chatmongkon SUWANNAPOOM, 吴亚江, 陈兴, Adeniyi C. ADEOLA, 陈静, 王文智. 泰国红原鸡线粒体全基因组测序及系统发育研究[J]. 动物学研究, 2018, 39(2): 127-129.
[5] 王春霞, 许昕, 李枢强. 弱蛛科小弱蛛属的整合分类及46个新种描述[J]. 动物学研究, 2017, 38(6): 321-448.
[6] 黄勋和, 李桂梅, 陈兴, 吴亚江, 李威娜, 钟福生, 王文智, 丁昭莉. 鉴定一个新的家鸡线粒体DNA单倍型亚群B3[J]. 动物学研究, 2017, 38(4): 208-210.
[7] Chatmongkon SUWANNAPOOM, 袁智勇, Nikolay A. POYARKOV Jr., 颜芳, Somboon KAMTAEJA, Robert W. MURPHY, 车静. 泰国北部发现泽蛙属(Fejervarya)一新种[J]. 动物学研究, 2016, 37(6): 327-337.
[8] 唐琼英, 史利霞, 刘飞, 俞丹, 刘焕章. 鳅超科鱼类MC1R基因的进化及系统发育应用[J]. 动物学研究, 2016, 37(5): 281-289.
[9] Colin GROVES. 21世纪中国的偶蹄目系统学[J]. 动物学研究, 2016, 37(3): 119-125.
[10] Bo-Rong LU, Ming-Zhen MA, Feng GAO, Yu-Hong SHI, Xiang-Rui CHEN. 双眦榴弹虫和济州琵琶列维榴弹虫的形态学和分子系统学研究[J]. 动物学研究, 2016, 37(3): 176-185.
[11] Xin ZHENG, Tian-Qi ZHOU, Tao WAN, Anabel PERDICES, Jin-Quan YANG, Xin-Sheng TANG, Zheng-Ping WANG, Li-Qun HUANG, Song HUANG, Shun-Ping HE. 中国宽鳍鱲黄山种群的研究揭示更多的线粒体区系且黄山种群表现出较高的遗传多样性[J]. 动物学研究, 2016, 37(2): 103-109.
[12] Ian S. LOGAN. 寨卡病毒突变有多快?[J]. 动物学研究, 2016, 37(2): 110-115.
[13] 张丽娜, 荣昌鹤, 何远, 关琼, 何彬, 朱兴文, 刘佳妮, 陈红菊. 常用系统发育树构建算法和软件鸟瞰[J]. 动物学研究, 2013, 34(6): 640-650.
[14] 李小娟, 唐琼英, 刘焕章. 稀有鮈鲫(Gobiocypris rarus)的骨骼特征及系统发育地位[J]. 动物学研究, 2013, 34(4): 379-386.
[15] 陈星, 沈永义, 张亚平. 线粒体DNA在分子进化研究中的应用[J]. 动物学研究, 2012, 33(6): 566-573.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed